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Abstract

Inverse modeling applications in atmospheric chemistry are increasingly addressing
the challenging statistical issues of data synthesis by adopting refined statistical anal-
ysis methods. This paper advances this line of research by addressing several cen-
tral questions in inverse modeling, focusing specifically on Bayesian statistical com-5

putation. Motivated by problems of refining bottom-up estimates of source/sink fluxes
of trace gas and aerosols based on increasingly high-resolution satellite retrievals of
atmospheric chemical concentrations, we address head-on the need for integrating
formal spatial statistical methods of residual error structure in global scale inversion
models. We do this using analytically and computationally tractable spatial statistical10

models, know as conditional autoregressive spatial models, as components of a global
inversion framework. We develop Markov chain Monte Carlo methods to explore and
fit these spatial structures in an overall statistical framework that simultaneously esti-
mates source fluxes. Additional aspects of the study extend the statistical framework
to utilize priors in a more physically realistic manner, and to formally address and deal15

with missing data in satellite retrievals. We demonstrate the analysis in the context of
inferring carbon monoxide (CO) sources constrained by satellite retrievals of column
CO from the Measurement of Pollution in the Troposphere (MOPITT) instrument on
the TERRA satellite, paying special attention to evaluating performance of the inverse
approach using various statistical diagnostic metrics. This is developed using synthetic20

data generated to resemble MOPITT data to define a proof-of-concept and model as-
sessment, and then in analysis of real MOPITT data.
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1 Introduction

1.1 Model and inference setting

Bayesian statistical techniques are increasingly being used in atmospheric chemistry
inverse modeling studies to refine bottom-up trace gas and aerosol source/sink flux
estimates. Past inverse studies have generally focused on analysis of surface and5

airborne in situ measurements from geographically distributed sites for species such
as CO2, CO, CH4 (e.g., Enting et al., 1995; Hein et al., 1997; Houweling et al., 1999;
Bergamaschi et al., 2000; Bousquet et al., 2000, 2006; Gurney et al., 2002, 2003; Ka-
sibhatla et al., 2002; Petron et al., 2002; Peylin et al., 2002; Gerbig et al., 2003; Palmer
et al., 2003; Rodenbeck et al., 2003; Fletcher et al., 2004; Michalak et al., 2005; Patra10

et al., 2005; Rayner et al., 2005; Baker et al., 2006; Mueller et al., 2008; Gourdji et al.,
2010). More recently, inverse studies based on synthetic and real satellite retrievals of
tropospheric trace gas concentration fields have identified the potential for these new
measurements to further improve our understanding of trace gas fluxes at regional and
sub-regional scales (e.g., Rayner and O’Brien, 2001; Jones et al., 2003; Arellano et al.,15

2004, 2006; Heald et al., 2004; Houweling et al., 2004; Petron et al., 2004; Chevallier
et al., 2005a,b, 2007, 2009a,b; Stavrakou and Mueller, 2006; Meirink et al., 2008; Feng
et al., 2009; Kopacz et al., 2009, 2010). To fully exploit the information content in these
high-dimensional, spatially-dense satellite data sets, we must address questions about
the nature of spatial dependencies among observations that are not predicted by exist-20

ing models, and how to appropriately integrate spatial dependencies to ensure robust
and unbiased inverse analyses. We show here how we can address both modeling
and computational issues via Bayesian analysis of conditional autoregressive (CAR)
spatial models to characterize spatial observation error fields.

We begin with the canonical model25

y =Kx+ε (1)

where y is a m×1 vector of atmospheric concentration measurements for a particular
1673
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species, x is a n×1 vector of corresponding fluxes with individual elements xi rep-
resenting source/sink categories (e.g. fossil-fuel combustion, biomass burning, etc.)
and/or geographical regions, and K is a m×n Jacobian matrix derived from an atmo-
spheric chemistry transport model (CTM) and describing the relationships between
discretized atmospheric concentrations and fluxes corresponding to source/sink cate-5

gories. The random m×1 vector ε accounts for errors associated with the measure-
ment technique, the chemical transport model, as well as representativeness errors
arising from differences in resolution between the measurements and model calculated
concentration fields. The vast majority of inverse modeling applications in atmospheric
chemistry are based on this formulation under the assumption of linearity of atmo-10

spheric transport for unreactive species such as CO2, and with additional linearizing
assumptions with regards to chemistry for reactive species such as CO and CH4. We
also note that while the atmospheric concentration measurements are spatially and
temporally resolved, the vector y is constructed by stacking measurements indexed by
CTM grid cells and time. Global-scale atmospheric chemistry inverse modeling stud-15

ies involving real or synthetic satellite retrievals have generally focused on analyzing
monthly or weekly mean measurements that are spatially aggregated to the CTM grid
resolution (typically 200–500 km in the horizontal). Satellite atmospheric concentration
retrievals typically consist of vertical averaged information which can be accounted for
in Eq. (1) by appropriately modifying K based on the specific instrument characteristics.20

Past studies have generally focused on estimating regionally-and monthly-aggregated
fluxes, though there is increasing interest in estimating fluxes at higher temporal and
spatial resolution. As a result, m≈104–105 and n≈10–104.

Bayesian analysis generates the posterior p.d.f. p(x | y)∝p(y |x)p(x) using the like-
lihood function p(y|x) induced by the model (Eq. 1) and a specified prior p.d.f. p(x). In25

the context of atmospheric tracer inverse modeling, p(x) represents prior knowledge
of fluxes from independent, bottom-up estimates. In atmospheric chemistry inverse
modeling applications it has typically been assumed that p(x) and p(ε) are multivari-
ate normal distributions, defined by x∼N(xa,Sa) and ε∼N(0,Sε) where xa and Sa are
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the prior mean vector and covariance matrix for x, and Sε is the observation error co-
variance matrix. Then, for known xa, Sa and Sε, inferences are defined by the resulting
posterior (x|y)∼N(xp,Sp) where

xp =xa+
(
K′Sε

−1K+Sa
−1)−1

K′Sε
−1(y−Kxa) or xp =xa+G(y−Kxa),

Sp
−1 =K′Sε

−1K+Sa
−1 or Sp = (I−GK)Sa

(2)

where G=SaK′(KSaK′+Sε)−1. Here xp and Sp are the posterior mean and covariance,5

respectively. The Gaussian, linear assumptions underlie analytic tractability in defining
the closed form posterior here, as well as extensions to time series of data (e.g., Prado
and West, 2010), so continue to be important in enabling applications.

With some exceptions noted in Sec. 1.2, previous applications in atmospheric chem-
istry have generally assumed a diagonal structure for Sε due to the lack of effective10

and computationally efficient approaches to identifying and integrating relevant spatial
structures. This eliminates the computational burden associated with the calculation of
the matrix inverse of Sε in Eq. (2). The equations clearly show, however, that if spatial
dependencies in the model errors exist and can be captured by a relevant non-diagonal
and structured covariance matrix Sε, this will impact on the posterior estimates xp of15

fluxes as well as the associated measures of uncertainties in Sp. The impact can be
substantial as demonstrated by some earlier studies (e.g., Chevallier, 2007) and our
examples below.

1.2 Application context and previous approaches

While the assumption of uncorrelated observational errors may be reasonable for in-20

verse studies based on surface measurements from a limited number of geographi-
cally scattered locations, it is increasingly untenable for geographically dense satellite
measurements. This is especially true when mid-and upper tropospheric tracer con-
centrations (where transport is relatively fast) contribute disproportionately to satellite
weighted column-average retrievals.25
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A few global scale inverse modeling studies have considered observation error cor-
relations, and their impact on posterior flux estimates. Chevallier (2007) considered the
problem of estimating CO2 fluxes from synthetic OCO measurements with known error
correlations, and demonstrated that posterior source estimates and the correspond-
ing uncertainties are sensitive to the treatment of observation error correlations in the5

inverse analysis. This study also showed that the effect of neglecting observation er-
ror correlations in the inverse analysis can be partially compensated for by techniques
such as observation thinning and error variance inflation, but at the expense of not fully
utilizing the information content of the measurements.

To avoid this loss of information, one can attempt to explicitly account for obser-10

vation error correlations in the inverse analysis. For example, it has been proposed
that spatial correlations associated with the CTM-component of the observation error
can be approximated by the spatial error covariance structure from pairs of short-term
chemical forecast simulations with different forecast starting times (Jones et al., 2003).
This approach to characterizing the CTM forecast error is intuitively appealing, but suf-15

fers from the drawback that running multiple forward chemical model simulations over
seasonal and inter-annual time scales is computationally expensive. It is also often
impractical to perform simulations with independent CTMs on a routine basis to more
fully characterize chemical model transport errors.

An alternative approach involves statistically modeling spatial observation error20

structures, and determining the associated parameters of the statistical error model
as part of the inverse analysis. A key challenge in this context is computation. Tra-
ditional spatial modeling utilizing standard Gaussian processes based on a spatial
distance-based correlation function (e.g., Rue and Held, 2005) have been explored to
a degree (e.g., Michalak et al., 2005; Mueller et al., 2008; Gourdji et al., 2010) in terms25

of characterizing spatial error structure in the prior. In the context of modeling obser-
vation error structures in a fully Bayesian framework, this approach is computationally
severely limited due to the resulting needs to perform multiple matrix inversions on co-
variance matrices of order m. Our interest in exploring alternatives that do not involve

1676

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/1671/2011/acpd-11-1671-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/1671/2011/acpd-11-1671-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 1671–1713, 2011

Bayesian spatial
modeling in

atmospheric inverse
analysis

C. Mukherjee et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

approximation short-cuts addresses the scale-up issues head-on while evaluating the
flexibility of the class of conditional autoregressive spatial models.

2 Statistical modeling developments

2.1 Overview

We discuss an approach that uses alternative spatial structures that a) recognize and5

exploit the fact that the data is inherently grid-based, and b) provide access to ef-
fective statistical computation using Bayesian simulation methods, specifically Markov
chain Monte Carlo (MCMC) analysis (e.g., Gelman et al., 2004; Prado and West, 2010,
chapter 1). We show how this allows direct and appropriate modeling of spatial depen-
dencies in observation errors in analysis that integrates evaluation of the spatial field10

structure together with inference on source fluxes. Our analysis involves additional
modeling advances for the inverse problem that include use of non-normal priors for
fluxes to properly reflect the fact that the sources of interest in this study are positive,
and the integration of missing data analysis to account for and infer missing retrievals.
We further note that computer code (in Matlab) for all our analyses reported is available15

for others to explore and use.
Models of spatial structure in Sε involve additional unknown parameters that define

the spatial dependencies; denote these by θθθ. Further, since satellite retrievals are
subject to substantial missing data we explicitly recognize this; we denote by M the set
of indices of missing retrievals, M ⊂ {1 :m}, while H is the set of indices for observed20

retrievals. Thus the observed data is yH and the missing data yM . Then, for a given
prior p(x), the formal Bayesian inference problem is to compute and summarize the
posterior p(x,θθθ,yM |yH ). We do this using custom development of standard Bayesian
statistical simulation methods based on MCMC; some summary aspects are mentioned
here and in the Appendix, with full technical details provided in the supplementary25

material on statistical computation.
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2.2 Spatial error structure: conditional autoregressive (CAR) model formulation

An approach based on Gaussian conditional autoregressive (CAR) spatial models is
able, as we show, to define realistic and appropriate spatial structures for geograph-
ically dense satellite retrieval data on a lattice, while leading to a computationally
tractable methodology for atmospheric tracer inverse modeling. The approach takes5

advantage of the fact that, under certain conditions, it is possible to statistically model
the precision matrix S−1

ε as a very sparse matrix defined by a very small number of
parameters, and that these parameters can be efficiently inferred using MCMC algo-
rithms.

In the basic model of Eq. (1), y represents the vectorized set of retrievals from the10

original global rectangular lattice, or grid. Suppose that y represents the vector of re-
trievals for a single month, and that εCAR (the notation change is to explicitly reflect the
assumption of a CAR spatial structure) refers to the corresponding errors. Specifica-
tion of a CAR model starts with a m×m proximity matrix, W, that designates weights to
the neighbors for each grid cell. In this application, we define the elements of W as15

wi j =


exp(−δi j ) if cell i and j are neighbors,
0 if i = j ,
0 otherwise,

(3)

where δi j≥0 measures distance between the centroids of grid cells i ,j ; with (lati ,longi )

representing centroid of cell i , this is given by δ2
i j=(lati−latj )

2+(longi−longj )
2.

The CAR model introduces spatial dependencies through the complete conditional
distributions for all elements of εCAR; the error in cell i depends on its neighbors as in20 (
εCAR
i |εCAR

j , j 6= i
)
∼N

[∑
j 6=i

(ρwi j/wi+)εCAR
j ,τ2

c/wi+

]
, for i =1,2,...,m, (4)

and where wi+=
∑m

j=1wi j . The spatial dependence parameter ρ defines spatial associ-

ation of each element of εCAR with its neighbors, based on a specified neighborhood
1678
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structure. Global correlations between more separated grid cells are induced as a re-
sult; cell i depends on a more distant cell k transitively through its neighbors that link
to neighbors of cell k, for example.

In the examples in this paper, we adopt a first-order neighborhood approach in which
the 8 cells that are physical neighbors (N, NE, E, SE, S, SW, W, NW) of grid cell i are5

neighbors in the model, and only those. It turns out that this first-order dependence
structure is capable of capturing spatial patterns sufficient to reflect much of the resid-
ual dependency we see in MOPITT data, though more elaborate neighborhoods could
be examined using the same Bayesian approach; the changes would simply use a dif-
ferent proximity matrix.10

Define the m×m matrix Dw=diag(w1+,w2+,...,wm+) and the spatial precision ma-
trix U=τ−2

c (Dw−ρW). It follows from the specification of the CAR model that the joint
distribution of all m error values is

εCAR ∼N(0,U−1). (5)

That is, the error covariance matrix Sε is replaced by the spatially structured CAR co-15

variance matrix U−1 that has non-zero pairwise correlations between cells over larger
distances induced by the local neighborhood dependencies even though U itself has
zero entries between cells that are not neighbors. Model fitting and inference relies
on posterior estimation of U through estimation of θθθ=(ρ,τc) as uncertain parameters.
Some of the computational tractability in dealing with the spatial structure as an in-20

gredient of the inverse analysis comes through the fact that the precision matrix U is
sparse; i.e., the elements Ui j are non-zero only when cells i ,j are neighbors.

CAR models are capable of representing spatial structure that has traditionally been
modeled via spatial distance-based correlation functions, referred to in the statistical
literatures as Gaussian processes (GP) (e.g., Rue and Held, 2005). A common form25

is the exponentially decaying correlations kernel in which the correlation between grid
cells i ,j is exp(−di j/L) where di j is the great circle distance between the centroids
of the cells and L is the range parameter. The appropriate way to compare with CAR
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models is to look at the conditional regression coefficients implied by such a GP model
in comparison to those that are used to define the CAR model, simply the ρwi j/wi+
term of Eq. (4). Figure 1 shows such a comparison for several relevant values of L,
each plotted side-by-side with a corresponding CAR model, on a 5×5 grid beyond
which the GP coefficients are negligible. This ability to adequately match local spatial5

patterns is a general feature of CAR models while its computational accessibility makes
it a clearly dominant choice over GP models for all but very small problems.

Finally, note that we may aggregate measurements over a series of time epochs
(e.g. from multiple months). In this case, the variance matrix of the extended ε

CAR will
be block diagonal, with the number of diagonal blocks U−1 equal to the number of time10

epochs considered in the analysis.

2.3 Prior specification for fluxes

To date, inverse applications in atmospheric chemistry have relied heavily on the linear-
Gaussian theory associated with multivariate normal priors over x and the resulting
analytic closed-form posterior summaries in Eq. (2). However, the fluxes of interest15

are often strictly non-negative, as for example, when CO sources are being estimated.
In exploring posterior inferences using the traditional normal priors, we routinely en-
counter posterior densities that give appreciable probability to negative flux values; this
is a purely technical issue as, in such cases, the data:prior synthesis is surely consis-
tent with very low or zero flux, whereas the mathematical assumption of normal priors20

leads to unconstrained posteriors that support practically meaningless negative values.
Modern Bayesian computational methods allow us to do away with such physi-

cally unrealistic assumptions that have historically been made for purely mathematical
tractability reasons. Here we simply adapt the usual assumptions and utilize priors for
strictly positive fluxes that are the usual normal distributions but now truncated at some25

small chosen lower bound to ensure scientifically relevant posterior inferences that dis-
allow negative values. The traditional normal prior specification based on bottom-up
fluxes xa=(xa,i ) has been to adopt a multivariate normal prior with Sa diagonal and
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having i th diagonal variance element Sa,i for each source i=1,...,n. In particular, it is
common to adopt Sa,i=c

2
ax

2
a,i for some specified coefficient of variation ca. The direct

modification to ensure non-negative fluxes above a lower value is to take the prior as
a product of independent priors over sources p(xi ) where each is defined by

xi ∼N(ma,i ,va,i )I(xi > ti ), i =1,...,n, (6)5

where I(·) is the indicator function and ti is a pre-specified small lower bound on realistic
flux levels.

Given the prior flux estimates xa,i , and prior flux variance Sa,i we can numerically
match the expectation and variance of the prior distribution given by Eq. (6) with xa,i
and Sa,i to determine the values of the required prior parameters ma,i and va,i . In the10

examples below, we use this specification with the lower bound on fluxes defined as
ti=xa,i/4.

2.4 Accounting for missing retrieval data

Satellite retrievals are inherently subject to missing data. This translates into an index
set M for the CO retrievals that are missing, while those indexed in the set H are15

recorded. Writing the observed data sub-vector as yH and the missing data sub-vector
as yM , we include the information that yM is missing in the analysis. This is done
in standard Bayesian fashion: yM is included as part of the inference problem in an
extended analysis that computes and summarizes aspects of the posterior p(x,θθθ,yM |
yH ).20

The missing rows of the transport matrix K(i ,∗) for each i ∈M are linearly interpo-
lated using the neighboring grid cells and the corresponding unknowns yi , i ∈M are
assigned values that are repeatedly updated via simulations from the relevant condi-
tional posterior predictive distributions in the Bayesian MCMC analysis, noted in the
next section and detailed further in the Appendix.25
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2.5 Bayesian computation

Iterative posterior simulation using MCMC has for some years been the de facto stan-
dard for Bayesian statistical computation (Gelman et al., 2004). Recalling that θθθ stands
for unknown parameters in the error variance Sε, the full joint posterior distribution for
all unknowns {x,θθθ,yM} conditional on yH is evaluated by simulating a large Monte5

Carlo sample, and basing inferences on numerical summaries of that sample. MCMC
analysis performs this simulation iteratively, successively updating each of the un-
knowns by simulation from a relevant conditional distribution that may involve some
of the most recently simulated, or imputed, values of other unknowns. Our MCMC
strategy for the current context is outlined in the Appendix, with further technical de-10

tails provided in the supplemental documentation.

3 Synthetic data studies

We first demonstrate the approach with an extensive set of synthetic data analyses that
parallel the problem of estimating CO sources from MOPITT data considered by Arel-
lano et al. (2004). We utilize synthetic data in order to provide a context where the true15

sources x are known, and to compare the CAR spatial model with a non-spatial (NS)
statistical model to evaluate the effect of neglecting “true” spatial error correlations on
the inverse source estimates. We pay special attention to evaluating performance of
the inverse approach using various statistical diagnostic metrics.

3.1 Generation of synthetic data with spatially correlated errors20

The inverse problem (Arellano et al., 2004) consists of using Level 2 V3 MOPITT day-
time column CO retrievals from April–December 2000 to estimate annual CO emissions
for n=15 source categories consisting of: a) fossil fuel/biofuel (FFBF) combustion in
7 geographical regions, b) biomass burning (BIOM) in 7 geographical regions, and
c) and oxidation of biogenic isoprene and monoterpenes on a global-scale (BIOG).25
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The geographical extent of each of the FFBF and BIOM regions is shown in Fig. 2.
CO production from methane oxidation is not estimated as part of the inversion, but
is taken into account by pre-subtracting its contribution to the MOPITT retrievals. The
Jacobian matrix K is constructed by applying MOPITT averaging kernels to gridded
CO fields calculated using an offline, tagged tracer version of the GEOS-Chem CTM5

at a resolution of 4×5 degrees. The gridded, quality controlled MOPITT dataset used
in the original analysis spans 50◦ N–50◦ S, yielding a lattice of 26×72 grid cells that
vectorizes to 1872 observations on a monthly basis. Combining data from April–
December 2000 yields a complete retrievals vector y of length m=16 848 and K of
dimension 16 848×15. Only MOPITT retrievals which satisfied certain quality control10

metrics were considered in the original analysis. We modified the original missing data
criterion used by Arellano et al. (2004) to one that requires at least 5 days of obser-
vations each month for a site to be considered valid; sites not meeting this threshold
are those treated as having missing data, yielding 139 values that are treated here
as missing data. Further details on MOPITT data processing and construction of K15

are given in Arellano et al. (2004), who also give values for the prior source vector xa

and set Sa diagonal with i th diagonal element Sa,i=c
2
ax

2
a,i for a constant coefficient

of variation ca=0.5. We use these values as the basis for positively constrained pri-
ors xi∼N(ma,i ,va,i )I(xi>ti ) taking ti=xa,i/4 such that the prior mean of each xi is the
specified bottom-up value xa,i and prior variance Sa,i .20

We generate a single synthetic MOPITT CO retrieval data set with spatially-
correlated errors by first generating a “true” source vector, x̃, simply sampling from
the truncated normal priors; we use ˜ to denote the synthetic quantities throughout.
We next construct a “true” error covariance matrix, S̃ε, that includes off-diagonal terms
representing spatial error correlations for cells within the same month; we assume no25

between-month dependencies. Individual elements of this matrix are specified using an
exponentially decaying correlation kernel; thus, for grid cells i ,j the covariance element
in S̃ε within each month is S̃ε,i j=σ

2exp(−di j/L) where di j is the great circle distance
between the cells and L the range parameter. We further take the constant observation
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error σ as 20% of the global, annual-mean MOPITT-equivalent CO columns from the
CTM with prior CO source estimates. Corresponding error terms are then simulated
from ε̃∼N(0,S̃ε) and the synthetic CO observations vector calculated directly from the
model, Eq. (1), i.e., ỹ=Kx̃+ε̃. Finally, the grid cells for which the real MOPITT data is
missing are then masked as missing, defining the index sets M and H. We explore 65

repeat versions of this synthetic data using L=100, 200, 500, 1000, 2000 and 5000 km,
respectively; this generates 6 synthetic data sets reflecting varying degrees of spatial
error correlation.

We repeat this exercise for a total of 1000 replicate simulations in order to quantify
Monte Carlo variability and resulting accuracy of reconstructions of the true source10

fluxes. Figures 3 and 4 show spatial plots of the subsets of elements of the simulated
ε̃ and ỹ for the single month of December 2000 for one particular realization of x̃

randomly drawn from the set of 1000 replicates.

3.2 Results: model adequacy and model comparisons

For each value of L, we compare the posterior mean estimates of CO fluxes with the15

known “true” fluxes for each of 1,000 synthetic data sets. Figures 5 and 6 show the
results via scatter plots of estimated CO flux versus the “truth” for one FFBF and one
BIOM source category, respectively. Similar comparisons for the remaining source cat-
egories are shown in the supplementary material. For one randomly selected synthetic
data set, Figs. 7 and 8 display the estimated 95% posterior credible intervals for each20

of the 15 source categories in both the CAR and NS model analyses; also shown are
the corresponding 95% prior credible intervals and the values of the “true” CO fluxes.
It is readily evident from these figures that the performance of the NS model is com-
parable to that of the CAR model when the degree of spatial error correlation is very
low (i.e., L is rather small). The CAR model is clearly superior at higher values of L25

over the range of “true” fluxes considered in this analysis. Results (see supplementary
material) are similar across the range of synthetic data sets considered here.
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To summarize performance across the 1000 synthetic datasets, and to provide fur-
ther insight into the relative performance of the CAR and NS approaches in recon-
structing source fluxes, we calculate two metrics for each CO source category using
the MCMC-sampled posterior distributions:

Success Rate= (#times the “true” CO flux falls within posterior 95% interval)/1000,5

Learning Ratio=average of (Prior 95% interval length/Posterior 95% interval length).

Figure 9 shows a combined plot of these two metrics for each CO category for different
values of L. Notice that the Learning Ratio>1 in each source category under both
models, indicating both the models learn significant information from the data; these
ratios differ for different sources, reflecting the fact that the measurements provide10

varying degrees of information on the magnitude of different sources. The Success
Rates demonstrate accuracy of the analysis in the standard statistical coverage sense;
Fig. 9 supports the point already noted that at low spatial dependencies the NS and the
CAR models have comparable accuracy, whereas the CAR model very substantially
outperforms the NS model when spatial structure becomes practically meaningful.15

Further substantiation in favor of spatial modeling with the CAR approach comes
from formal statistical summaries for model comparison. A key, standard measure of
relative fit of two models is the Bayes factor (an integrated variant of a likelihood ratio);
to compare the CAR with the NS approach, this is

BF(CAR : NS)=pCAR(yH )/pNS(yH )20

where p∗(yH ) is the marginal probability density function of the observed data yH un-
der the assumptions of the model ∗=CAR or ∗=NS, respectively; p∗(yH ) is otherwise
referred to as the marginal likelihood or evidence for model ∗, and the ratio form in
the Bayes factor measures relative evidence on a likelihood scale; see Bernardo and
Smith (1994, chapter 6) and West and Harrison (1997, chapters 11 and 12), for ex-25

ample. A Bayes factor BF(CAR : NS)>1 indicates that the data favors the CAR over
NS model, with values of 100 or more indicating very substantial evidence indeed.
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From the MCMC analysis of each synthetic data set we can estimate the values of
pCAR(yH ) and pNS(yH ) and hence estimate the Bayes factor for that particular data
set. Table 1 reports the averages of the logged values over the 1000 simulated data
sets, together with the associated 95% intervals. We see significantly positive values
of log(BF(CAR:NS)) for larger L, indicating extremely strong evidence in favor of the5

spatial model over the non-spatial model.
We illustrate the effectiveness of CAR in modeling these synthetic (non-CAR) spatial

dependencies by comparing the synthetic data with samples from the posterior pre-
dictive distribution. Exploring posterior predictions is a traditional statistical method
for both informal and formal evaluation of model fit; here we simply present graphical10

summaries of prediction from the model. For any of the posterior MCMC draws of
{x,θθθ,yM} we can, using these values, directly simulate additional synthetic data y from
the model; such simulations generate random draws from the posterior predictive dis-
tribution – i.e., synthetic representations of what data will look like if the model is true.
Often, simply exploring graphical and numerical summaries of posterior predictive sim-15

ulated data sets can highlight ways in which the model is inadequate when compared
to the real data (West and Harrison, 1997; Gelman et al., 2004). Figures 10 and 11
show representative posterior predictive samples from the NS and CAR models for
L=100 km and L=5000 km, respectively. It is clear that the spatial patterns of posterior
predictive samples from the CAR model are visually similar to the synthetic data, while20

they are clearly noisier for the NS model for higher spatial dependences.

4 Analysis of real MOPITT retrievals

We now consider the analysis applied to MOPITT retrievals of CO columns, paralleling
the study of Arellano et al. (2004) but now including spatial CAR structure, modified
priors, and formal treatment of missing data. Figure 12 displays 95% posterior credible25

intervals from CAR and NS models for each source category, and Table 2 presents
detailed posterior summaries. We observe significant differences between the two
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analyses for several of the CO source categories considered here. In particular, the
CAR analysis suggests that, for several of the FFBF and BIOM source categories the
top-down estimates, are not as inconsistent with the bottom-up estimates as is sug-
gested by the NS analysis.

Model comparison using Bayes factors yields log(BF(CAR : NS))>10073, sim-5

ply overwhelming statistical evidence that the CAR model substantially improves
model:data match due to the presence of significant spatial residual structure. To fur-
ther indicate the ability of the spatial model to reflect realistic spatial structure, Fig. 13
displays two randomly selected posterior predictive samples from the NS and CAR
model analyses, together with the actual data for December 2000. The spatial depen-10

dence patterns in the CAR samples are visually similar to that in the real data, while the
NS samples are again noisier. These preliminary comparisons suggest that account-
ing for spatial error structures in the real data is important in the context of constraining
CO sources using spatially-dense satellite measurements. Further investigations at
higher spatial and temporal resolution with the latest version of the MOPITT dataset,15

as well with retrievals from other satellite instruments, are required to more fully char-
acterize and account for these spatial error patterns and to refine top-down CO source
estimates.

5 Concluding remarks

The fast-expanding ability to access increasingly high-resolution atmospheric data us-20

ing satellite imagery raises exciting opportunities for substantial advances in data syn-
thesis in inverse modeling. Capitalizing on this opportunity will involve increased atten-
tion to core challenges that are inherently statistical in nature. The work presented here
reflects this view and exemplifies the potential to address rather basic yet challenging
problems of very large-scale spatial modeling, coupled with refined prior specifications25

and treatment of missing data, in inverse studies of atmospheric trace gas source/sink
flux estimation. To date, although the broader field of atmospheric chemistry inverse
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modeling has become heavily invested in statistical methods, there has been limited
development of what are standard statistical approaches utilizing Bayesian simulation
methods, including MCMC. The work here demonstrates the utility of the Bayesian per-
spective and the enabling computational methodology provides for extending inverse
modeling frameworks to incorporate relevant spatial stochastic structure.5

Our analysis framework explicitly paralleled the earlier work of Arellano et al. (2004)
in order to demonstrate the extensions with spatial CAR modeling and other statisti-
cal innovations. Based on this proof-of-concept in studies of both synthetic and real
MOPITT retrieval data, some next steps include expanding the model framework to
explicitly represent time dependencies in data and models. The extension of spatial10

modeling into a temporal framework is standard, and this, together with extension to
model potential time-variations in source fluxes, will rely on additional Bayesian com-
putational methods that are well-developed in other areas of multivariate time series
analysis (West and Harrison, 1997; Prado and West, 2010). Additional important di-
rections include the application of these techniques to carbon dioxide and methane15

as high quality satellite measurements of these climatically important gases become
available, especially in the context of source/sink estimation with high spatial resolution.

Appendix A

Posterior computation20

The Markov chain Monte Carlo posterior simulator successively re-simulates values
of all of the unknowns {x,θθθ,yM} to draw a large Monte Carlo sample from the full
joint posterior p(x,θθθ,yM |yH ). Initializing at (essentially arbitrary) starting values θθθ,yM ,
the MCMC proceeds through many iterations to revise the full set of unknowns, at
each iterate stepping through the stages below to stochastically update x conditional25

on the last values of {θθθ,yM}, then θθθ conditional on the latest values of {x,yM}, and
then yM conditional on the latest values of {x,θθθ}. The specific distributions used for
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each of these three stages are summarized here with more technical details in the
supplemental documentation.

We use the following notation:

i. x−i=(x1,...,xi−1,xi+1,...,xn)′

ii. K(i ,∗) is the i th row of K and K(∗,i ) is the i th column of K5

iii. K(∗,−i ) is the submatrix of K obtained by deleting the i th column

iv. yA=(yi )i∈A, a subvector of y

v. K(A,∗)=(K(i ,∗))i∈A, a submatrix of K

vi. UA,B=(Ui j )i∈A,j∈B, a submatrix of U

vii. M is the set of indices for missing retrievals, M ⊂{1 :m}, while H={1 :m}\M is the10

set of indices for observed retrievals

viii. IG(a,b) stands for an inverse gamma distribution

We give summary details for MCMC in both the non-spatial and CAR model contexts.
As described in Sect. 2.3, analysis is based on the use of the truncated normal priors
for sources with that for the i -th source being xi ∼N(ma,i ,va,i )I(xi > ti ) where ma,i and15

va,i are numerically specified so that the prior has mean xa,i and variance Sa,i with
ti=xa,i/4.

A1 Single epoch data

We first give summaries for the analysis of a single epoch of data – a single monthly
retrieval y in the case of MOPITT data. The extension to the context analyzed in20

our examples, paralleling Arellano et al. (2004) with multi-month retrievals and time-
invariant fluxes, is then also summarized in the following subsection.
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A1.1 Posterior computation for the non-spatial model

The prior distribution for τ2
n is an inverse Gamma distribution, τ2

n∼IG(αn,λn) where we
set the prior mean, E(τ2

n)=σ2 (known), and the coefficient of variation to 0.5 so that
αn=6 and λn=5σ2. The MCMC algorithm alternatively samples from the following con-
ditional distributions:5

– For i=1,...,n, resample the i th source element from(
xi |x−i ,τ

2
n,y,K

)
∼N(En,i ,Vn,i )I(xi > ti )

where

Vn,i =
(
v−1

a,i +τ−2
n K′

(∗,i )K(∗,i )
)−1

and En,i = Vn,i
{
v−1

a,i ma,i +τ−2
n K′

(∗,i )(y−K(∗,−i )x−i )
}
.

– Resample (τ2
n |x,y,K)∼ IG(αn+m/2,λn+q/2) where q=(y−Kx)′(y−Kx).10

– Resample values of the missing data vector from the conditional posterior predic-
tive distribution (yM |x,τ2

n,K)∼N(K(M,∗)x,τ
2
nI).

A1.2 Posterior computation for the CAR model

The prior for τ2
c∼IG(αc,λc) with prior mean, E(τ2

c)=8σ2 (known, sets unbiased prior
when there is no spatial dependence, i.e. ρ=0), and coefficient of variation set at 0.5;15

this implies αc=6 and λc=40σ2. Further, we adopt the uninformative uniform prior for
ρ on 0<ρ<1. The MCMC algorithm alternatively samples from the following conditional
distributions:

– For i=1,...,n, resample the i th source element from(
xi |x−i ,τ

2
c,ρ,y,K

)
∼N(Ec,i ,Vc,i )I(xi > ti )20
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where

Vc,i =
(
v−1

a,i +K′
(∗,i )UK(∗,i )

)−1
and Ec,i=Vc,i

{
v−1

a,i ma,i +K′
(∗,i )U(y−K(∗,−i )x−i )

}
with U=τ−2

c (Dw−ρW).

– Resample (τ2
c | x,ρ,y,K)∼IG(αc+m/2,λc+q/2) where q=(y−Kx)′(Dw−ρW)

(y−Kx).5

– Resample (ρ | x,τ2
c,y,K) with a random-walk Metropolis step as follows. First,

sample a candidate value ρ∗∼N(ρ,s2) and compute U∗=τ−2
c (Dw−ρ

∗W). The can-
didate value is then accepted with probability

α=min

{
1,

N(y |Kx,U∗−1)

N(y |Kx,U−1)

}
;

if accepted, set ρ=ρ∗ and U=U∗; otherwise retain the previous values ρ,U. The10

step size s is defined adaptively during the initial burn-in phase of the MCMC.

– Resample values of the missing data vector from the conditional posterior predic-
tive distribution(
yM |x,τ2

c,yH ,K
)
∼N

(
K(M,∗)x−U−1

M,MUM,H (yH −K(H,∗)x), U−1
M,M

)
.

Note here how the spatial covariance structure in U plays a key role in determining15

the relative weightings of cells having observed data via the current values of mul-
tiple regression coefficients (in the regression of yM on yH ). Actual sampling from
this distribution does not in fact require any matrix inversions; only a Cholesky de-
composition of a square matrix whose dimension is the number of missing values
|M | (137×137 in our MOPITT study context) (Rue, 2001; Rue and Held, 2005).20

As a result, these successive imputations of missing data to represent the pos-
terior estimates and uncertainties about yM do not add measurably to the overall
computational burden of the MCMC.
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A2 Multi-epoch data with time-invariant fluxes

To parallel Arellano et al. (2004), consider now the case of several epochs (e.g. months)
of retrieval data. In epoch t=1,...,T, retrievals follow the model of Eq. (1) where we now
index by t, viz. yt=Ktx+εt for t=1,...,T. We can simply stack the vectors of retrievals
to obtain a model as in Eq. (1) for the full set of T epochs. Thus, we now understand5

that (a) y is the (mT )×1 vector obtained by stacking the T vectors yt, (b) K is the
(mT )×n matrix obtained by stacking the T matrices Kt, and (c) ε is the (mT )×1 matrix
obtained by stacking the T error vectors εt. The above MCMC analysis is modified in
minor technical details as a result, as follows.

A2.1 Posterior computation for the non-spatial model10

The one modification needed to the summary in Appendix A1.1 above is in resam-
pling τn; now the degrees-of-freedom of the inverse gamma distribution is mT instead
of m, reflecting the T epochs of data, viz. (τ2

n | x,y,K)∼IG(αn+mT/2,λn+q/2) where
q=(y−Kx)′(y−′Kx).

A2.2 Posterior computation for the CAR model15

There are three modifications to the single epoch summary of Appendix A1.2 above:
details of resampling τ2

c,ρ and then yM , as follows.

– Resample (τ2
c | x,ρ,y,K)∼IG(αc+mT/2,λc+q/2) where q=

∑T
t=1(yt−Ktx)′

(Dw−ρW)(yt−Ktx).

– In the Metropolis-Hastings resampling of ρ, the acceptance probability α is modi-20

fied to

α=min

{
1,

T∏
t=1

N(yt |Ktx,U
∗−1)

N(yt |Ktx,U−1)

}
.
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– Resample values of the missing data vector from the conditional posterior predic-
tive distribution(
yM |x,τ2

c,yH ,K
)
∼N

(
K(M,∗)x−V−1

M,MVM,H (yH −K(H,∗)x), V−1
M,M

)
.

where V is the (mT )×(mT ) block diagonal matrix comprised of T diagonal M×M
blocks U; that is, V=I⊗U where I is the T×T identity matrix and ⊗ represents5

Kronecker product.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/1671/2011/
acpd-11-1671-2011-supplement.zip.
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Table 1. Posterior means and 95% credible intervals for log(BF(CAR:NS)) from the analyses
of 1000 synthetic data sets.

L log(BF(CAR:NS)) 95% CI

100 3.69 [−36.26, 42.01]
200 154.86 [102.99, 208.23]
500 2331.80 [2136.52, 2535.91]

1000 6040.01 [5643.34, 6473.56]
2000 10 450.46 [9644.83, 11 346.37]
5000 16 059.21 [14 180.68, 17 959.34]
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Table 2. Summary of posterior inferences for the CO fluxes (in units of Tg CO yr−1) and model
parameters from analysis of actual MOPITT retrieval data. See Fig. 2 for definition of source
category numbers.

Prior NS model NS model CAR model CAR model
mean (SD) mean (SD) 95% CI mean (SD) 95% CI

x1 102.99 (51.49) 83.13 (3.46) [76.26, 89.85] 73.24 (10.84) [51.97, 94.11]
x2 95.20 (47.60) 37.18 (5.42) [26.90, 48.40] 42.71 (10.87) [25.22, 66.09]
x3 45.72 (22.86) 95.43 (5.98) [83.56, 106.92] 54.17 (11.41) [31.45, 76.10]
x4 108.72 (54.36) 195.06 (3.58) [188.09, 202.19] 158.55 (8.61) [141.74, 175.70]
x5 88.14 (44.07) 147.75 (3.14) [141.61, 153.93] 116.96 (7.48) [102.37, 131.79]
x6 41.03 (20.51) 70.29 (2.84) [64.72, 75.93] 67.90 (7.38) [53.43, 82.71]
x7 120.98 (60.49) 265.42 (5.63) [254.48, 276.36] 108.83 (13.95) [81.20, 136.02]
x8 21.99 (10.99) 64.52 (1.56) [61.49, 67.59] 38.94 (4.24) [30.63, 47.23]
x9 38.58 (19.29) 96.56 (1.68) [93.24, 99.78] 34.23 (4.31) [25.80, 42.77]
x10 88.28 (44.14) 100.03 (1.47) [97.11, 102.93] 59.41 (4.07) [51.39, 67.26]
x11 133.91 (66.95) 92.25 (1.83) [88.70, 95.86] 52.56 (4.53) [43.72, 61.44]
x12 146.51 (73.25) 92.53 (1.50) [89.62, 95.48] 90.99 (3.77) [83.71, 98.61]
x13 41.51 (20.75) 104.48 (2.13) [100.31, 108.66] 44.27 (4.74) [34.78, 53.47]
x14 28.05 (14.02) 13.09 (1.88) [9.45, 16.81] 10.32 (2.20) [7.19, 15.34]
x15 462.12 (231.06) 152.00 (7.73) [136.47, 166.94] 224.74 (20.73) [183.57, 265.80]

τ2
n 0.1333 (0.0666) 0.0277 (3.0e-4)
τ2
c 1.0662 (0.5331) 0.0008 (8.9e-6) [0.0008, 0.0008]
ρ 0.5000 (0.2890) 0.99992 (3.6e-5) [0.99983, 0.99997]
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Fig. 1. Left: conditional regression coefficients from Gaussian process models (GP) with expo-
nential decay correlation kernel exp(−d/L) for several values of the range length L. Here d is
the centroid-centroid distance between cells and the regression coefficients plotted are those
for the regression of the central cell (3,3) on the rest. Right: conditional regression coefficients
from CAR model using ρ values fitted to match the regressions in the corresponding GP model.
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Fig. 2. Color-coded definition of fossil-fuel (FFBF) and biomass burning (BIOM) CO source
regions (after Arellano et al., 2004). Numbers represent the source category number used
in the text: 1=FFBF North America (FFBF-NAM); 2=FFBF Europe (FFBF-EUR); 3=FFBF
Russia (FFBF-RUS); 4=FFBF East Asia (FFBF-EAS); 5=FFBF South Asia (FFBF-SAS);
6=FFBF Southeast Asia (FFBF-SEA); 7=FFBF Rest of the World (FFBF-ROW); 8=BIOM Other
(BIOM-OTH); 9=BIOM Northern Latin America (BIOM-NLA); 10=BIOM Southern Latin America
(BIOM-SLA); 11=BIOM Northern Africa (BIOM-NAF); 12=BIOM Southern Africa (BIOM-SAF);
13=BIOM South and Southeast Asia (BIOM-SSA); 14=BIOM Boreal (BIOM-BOR). Source cat-
egory 15 (not shown here) represents the global source of CO from biogenic hydrocarbon
oxidation (BIOG).
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Fig. 3. Spatial images of randomly selected realizations of the synthetic MOPITT CO column
observation errors ε̃ (in units of 1018 molecules CO cm−2) for December 2000 for different val-
ues of L. The black cells represent missing observations.
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Fig. 4. Spatial images of synthetic MOPITT CO column measurements ỹ (in units of
1018 molecules CO cm−2) corresponding to the errors in Fig. 3. The black cells represent miss-
ing observations.
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Fig. 5. Scatter plots of “true” xi versus estimated xi (in units of Tg CO yr−1) for the FFBF North
America (FFBF-NAM) source category computed from 1000 synthetic data sets. RMSE is the
root mean square error metric of the estimated xis from the “true” xis.
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Fig. 6. Scatter plots as in Fig. 5 now for the BIOM Southern Africa (BIOM-SAF) source category.
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Fig. 7. Plots of 95% posterior credible intervals for NS and CAR model analyses for L=100, 200
and 500 km, showing summary inferences of source magnitude for all 15 CO source categories
for one synthetic dataset (see Fig. 2 for definition of source category numbers). Posterior
means for both are marked with dots inside the corresponding intervals. Alongside we plot
95% prior credible intervals for the corresponding source and indicate the “true” CO source
with a square.
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Fig. 8. Plots as in Fig. 7, now based on L=1000, 2000, and 5000 km.
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Fig. 9. Success Rate (top panels) and Learning Ratio (bottom panels) for all CO source cate-
gories for different values of L. See Fig. 2 for definition of source category numbers.
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Fig. 10. Two samples of column CO fields (in units of 1018 molecules CO cm−2) from the pos-
terior predictive distributions of NS (lower 2 left panels) and CAR (lower 2 right panels) models
for December 2000 for L=100 km; top panels show the corresponding synthetic data.
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Fig. 11. Posterior predictive plots as in Fig. 10, now with L=5000 km.
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Fig. 12. Plots of 95% prior and posterior credible intervals for the real MOPITT data inversion.
Symbols indicate corresponding mean estimates. See Fig. 2 for definition of source category
numbers.
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Fig. 13. Two samples of column CO fields (in units of 1018 molecules CO cm−2) from the pos-
terior predictive distributions of NS (lower 2 plots, left panels) and CAR (lower 2 plots, right
panels) models for December 2000; the top panels show the corresponding MOPITT retrieval
data.
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